Жизненный цикл программных систем. Жизненный цикл программного обеспечения: понятие, стандарты, процессы

Жизненный цикл программных систем. Жизненный цикл программного обеспечения: понятие, стандарты, процессы

Жизненный цикл программы.

Жизненный цикл программного обеспечения (ПО) - период времени, который начинается с момента принятия решения о необходимости создания программного продукта и заканчивается в момент его полного изъятия из эксплуатации. Этот цикл - процесс построения и развития ПО.

Этапы жизненного цикла :

2. Проектирование

3. Реализация

4. Сборка, тестирование, испытание

5. Внедрение (выпуск)

6. Сопровождение

Различают 2 случая производства ПО: 1) ПО делается для конкретного заказчика. В этом случае нужно прикладную задачу преврашать в программистскую. Нужно понять как функционирует та среда, которую нужно автоматизировать (анализ бизнес-процессов). В результате появляется документация-спецификация требования, где указаны какие именно задачи д.б. решены и при каких условиях. Эту работу выполняет системный аналитик (аналитик бизнес-процессов).

2) ПО разрабатывается для рынка. Нужно проводить маркетинговые исследования и найти какого продукта на рынке нет. Это связано с большим риском. Цель – разработка спецификации требований.

Проектирование

Цель – определение общей структуры (архитектуры) ПО. Результат – спецификация ПО. Эту работу выполняет системный программист.

Реализация

Написание программного кода. Реализация включает и разработку, и тестирование, и документацию.

Сборка, тестирование, испытние

Сборка всего, что сделано разными программистами. Тестирование всего программного комплекса. Отладка – поиск и устранение причин ошибок. Испытание – уточнение технических характеристик. В результате – гарантия работоспособносит программы.

Внедрение (выпуск)

Внедрение – когда работают на одного заказчика. Включает постановку программы у заказчика, обучение заказчика, консультации, устранение ошибок и явных недостатков. Должно произойти отчуждение ПО – пользователь может работать с ПО без участия автора.

Выпуск – когда ПО разрабатывается на рынок. Начинается с этапа бета-тестирования. Соотв. версия – бета-версияю. Альфа-тестирование – тестирование людьми из той же организации, не участвовавших в разработке программ. Бета-тестирование – изготовление нескольких экземпляров ПО и отправка потенциальным заказчикам. Цель – еще раз проверить разработку ПО.

Если на рынок выпускается принципиально новый ПО, то возможно несколько бета-тестирований. После бета-тестирование – выпуск коммерческой версии.

Сопровождение

Устранение замеченных в ходе эксплуатации ошибок. Внесение непринципиальных усовершенствований. Накопление предложений для разработки следующей версии.

Модели жизненного цикла

1. Waterfall («водопад», каскадная модель)

2. Прототипирование

Сначала разрабатывается не сам программный продукт, а его прототип, содержащий решение главных проблем, стоящих перед разработчиками. После успешного завершения разработки прототипа по тем же принципам разрабатывается и настоящий программный продукт. Прототип позволяет лучше понимать требования к разрабатываемой программе. Используя прототип заказчик также может точнее сформулировать свои требования. Разработчик имеет возможность с помощью прототипа предъявить заказчику предварительные результаты своей работы.

3. Итерационная модель

Задача разделяется на подзадачи и определяется очередность их реализации т.о., чтобы каждая следующая подзадачи расширяла возможности ПО. Успех существенно зависит от того сколь удачно разделены задачи на подзадачи и как выбрана очередность. Преимущества: 1) возможность активного участия заказчика в разработке, он имеет возможность уточнить свои требования в ходе разработки; 2) возможность тестирования вновь разрабатываемых частей совместно с ранее разработанными, это уменьшит затраты на комплексную отладку; 3) во время разработки можно начинать внедрение по частям.

Следует начать с определения, Жизненный цикл программного обеспечения (Software Life Cycle Model) — это период времени, который начинается с момента принятия решения о создании программного продукта и заканчивается в момент его полного изъятия из эксплуатации. Этот цикл — процесс построения и развития ПО.

Модели Жизненного цикла программного обеспечения

Жизненный цикл можно представить в виде моделей. В настоящее время наиболее распространенными являются: каскадная , инкрементная (поэтапная модель с промежуточным контролем ) и спиральная модели жизненного цикла.

Каскадная модель

Каскадная модель (англ . waterfall model ) — модель процесса разработки программного обеспечения, жизненный цикл которой выглядит как поток, последовательно проходящий фазы анализа требований, проектирования. реализации, тестирования, интеграции и поддержки.

Процесс разработки реализуется с помощью упорядоченной последовательности независимых шагов. Модель предусматривает, что каждый последующий шаг начинается после полного завершения выполнения предыдущего шага. На всех шагах модели выполняются вспомогательные и организационные процессы и работы, включающие управление проектом, оценку и управление качеством, верификацию и аттестацию, менеджмент конфигурации, разработку документации. В результате завершения шагов формируются промежуточные продукты, которые не могут изменяться на последующих шагах.

Жизненный цикл традиционно разделяют на следующие основные этапы :

  1. Анализ требований,
  2. Проектирование,
  3. Кодирование (программирование),
  4. Тестирование и отладка,
  5. Эксплуатация и сопровождение.

Достоинства модели:

  • стабильность требований в течение всего жизненного цикла разработки;
  • на каждой стадии формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;
  • определенность и понятность шагов модели и простота её применения;
  • выполняемые в логической последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие ресурсы (денежные. материальные и людские).

Недостатки модели:

  • сложность чёткого формулирования требований и невозможность их динамического изменения на протяжении пока идет полный жизненный цикл;
  • низкая гибкость в управлении проектом;
  • последовательность линейной структуры процесса разработки, в результате возврат к предыдущим шагам для решения возникающих проблем приводит к увеличению затрат и нарушению графика работ;
  • непригодность промежуточного продукта для использования;
  • невозможность гибкого моделирования уникальных систем;
  • позднее обнаружение проблем, связанных со сборкой, в связи с одновременной интеграцией всех результатов в конце разработки;
  • недостаточное участие пользователя в создании системы — в самом начале (при разработке требований) и в конце (во время приёмочных испытаний);
  • пользователи не могут убедиться в качестве разрабатываемого продукта до окончания всего процесса разработки. Они не имеют возможности оценить качество, т.к.нельзя увидеть готовый продукт разработки;
  • у пользователя нет возможности постепенно привыкнуть к системе. Процесс обучения происходит в конце жизненного цикла, когда ПО уже запущено в эксплуатацию;
  • каждая фаза является предпосылкой для выполнения последующих действий, что превращает такой метод в рискованный выбор для систем, не имеющих аналогов, т.к. он не поддается гибкому моделированию.

Реализовать Каскадную модель жизненного цикла затруднительно ввиду сложности разработки ПС без возвратов к предыдущим шагам и изменения их результатов для устранения возникающих проблем.

Область применения Каскадной модели

Ограничение области применения каскадной модели определяется её недостатками. Её использование наиболее эффективно в следующих случаях:

  1. при разработке проектов с четкими, неизменяемыми в течение жизненного цикла требованиями, понятными реализацией и техническими методиками;
  2. при разработке проекта, ориентированного на построение системы или продукта такого же типа, как уже разрабатывались разработчиками ранее;
  3. при разработке проекта, связанного с созданием и выпуском новой версии уже существующего продукта или системы;
  4. при разработке проекта, связанного с переносом уже существующего продукта или системы на новую платформу;
  5. при выполнении больших проектов, в которых задействовано несколько больших команд разработчиков.

Инкрементная модель

(поэтапная модель с промежуточным контролем)

Инкрементная модель (англ . increment — увеличение, приращение) подразумевает разработку программного обеспечения с линейной последовательностью стадий, но в несколько инкрементов (версий), т.е. с запланированным улучшением продукта за все время пока Жизненный цикл разработки ПО не подойдет к окончанию.


Разработка программного обеспечения ведется итерациями с циклами обратной связи между этапами. Межэтапные корректировки позволяют учитывать реально существующее взаимовлияние результатов разработки на различных этапах, время жизни каждого из этапов растягивается на весь период разработки.

В начале работы над проектом определяются все основные требования к системе, подразделяются на более и менее важные. После чего выполняется разработка системы по принципу приращений, так, чтобы разработчик мог использовать данные, полученные в ходе разработки ПО. Каждый инкремент должен добавлять системе определенную функциональность. При этом выпуск начинают с компонентов с наивысшим приоритетом. Когда части системы определены, берут первую часть и начинают её детализировать, используя для этого наиболее подходящий процесс. В то же время можно уточнять требования и для других частей, которые в текущей совокупности требований данной работы были заморожены. Если есть необходимость, можно вернуться позже к этой части. Если часть готова, она поставляется клиенту, который может использовать её в работе. Это позволит клиенту уточнить требования для следующих компонентов. Затем занимаются разработкой следующей части системы. Ключевые этапы этого процесса — простая реализация подмножества требований к программе и совершенствование модели в серии последовательных релизов до тех пор, пока не будет реализовано ПО во всей полноте.

Жизненный цикл данной модели характерен при разработке сложных и комплексных систем, для которых имеется четкое видение (как со стороны заказчика, так и со стороны разработчика) того, что собой должен представлять конечный результат. Разработка версиями ведется в силу разного рода причин:

  • отсутствия у заказчика возможности сразу профинансировать весь дорогостоящий проект;
  • отсутствия у разработчика необходимых ресурсов для реализации сложного проекта в сжатые сроки;
  • требований поэтапного внедрения и освоения продукта конечными пользователями. Внедрение всей системы сразу может вызвать у её пользователей неприятие и только “затормозить” процесс перехода на новые технологии. Образно говоря, они могут просто “не переварить большой кусок, поэтому его надо измельчить и давать по частям”.

Достоинства и недостатки этой модели (стратегии) такие же, как и у каскадной (классической модели жизненного цикла). Но в отличие от классической стратегии заказчик может раньше увидеть результаты. Уже по результатам разработки и внедрения первой версии он может незначительно изменить требования к разработке, отказаться от нее или предложить разработку более совершенного продукта с заключением нового договора.

Достоинства:

  • затраты, которые получаются в связи с изменением требований пользователей, уменьшаются, повторный анализ и совокупность документации значительно сокращаются по сравнению с каскадной моделью;
  • легче получить отзывы от клиента о проделанной работе — клиенты могут озвучить свои комментарии в отношении готовых частей и могут видеть, что уже сделано. Т.к. первые части системы являются прототипом системы в целом.
  • у клиента есть возможность быстро получить и освоить программное обеспечение — клиенты могут получить реальные преимущества от системы раньше, чем это было бы возможно с каскадной моделью.

Недостатки модели:

  • менеджеры должны постоянно измерять прогресс процесса. в случае быстрой разработки не стоит создавать документы для каждого минимального изменения версии;
  • структура системы имеет тенденцию к ухудшению при добавлении новых компонентов — постоянные изменения нарушают структуру системы. Чтобы избежать этого требуется дополнительное время и деньги на рефакторинг. Плохая структура делает программное обеспечение сложным и дорогостоящим для последующих изменений. А прерванный Жизненный цикл ПО приводит еще к большим потерям.

Схема не позволяет оперативно учитывать возникающие изменения и уточнения требований к ПО. Согласование результатов разработки с пользователями производится только в точках, планируемых после завершения каждого этапа работ, а общие требования к ПО зафиксированы в виде технического задания на всё время её создания. Таким образом, пользователи зачастую получаю ПП, не удовлетворяющий их реальным потребностям.

Спиральная модель

Спиральная модель: Жизненный цикл — на каждом витке спирали выполняется создание очередной версии продукта, уточняются требования проекта, определяется его качество и планируются работы следующего витка. Особое внимание уделяется начальным этапам разработки — анализу и проектированию, где реализуемость тех или иных технических решений проверяется и обосновывается посредством создания прототипов.


Данная модель представляет собой процесс разработки программного обеспечения, сочетающий в себе как проектирование, так и постадийное прототипировнаие с целью сочетания преимуществ восходящей и нисходящей концепции, делающая упор на начальные этапы жизненного цикла: анализ и проектирование. Отличительной особенностью этой модели является специальное внимание рискам, влияющим на организацию жизненного цикла.

На этапах анализа и проектирования реализуемость технических решений и степень удовлетворения потребностей заказчика проверяется путем создания прототипов. Каждый виток спирали соответствует созданию работоспособного фрагмента или версии системы. Это позволяет уточнить требования, цели и характеристики проекта, определить качество разработки, спланировать работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который удовлетворяет действительным требованиям заказчика и доводится до реализации.

Жизненный цикл на каждом витке спирали — могут применяться разные модели процесса разработки ПО. В конечном итоге на выходе получается готовый продукт. Модель сочетает в себе возможности модели прототипирования и водопадной модели . Разработка итерациями отражает объективно существующий спиральный цикл создания системы. Неполное завершение работ на каждом этапе позволяет переходить на следующий этап, не дожидаясь полного завершения работы на текущем. Главная задача — как можно быстрее показать пользователям системы работоспособный продукт, тем самым активизируя процесс уточнения и дополнения требований.

Достоинства модели:

  • позволяет быстрее показать пользователям системы работоспособный продукт, тем самым, активизируя процесс уточнения и дополнения требований;
  • допускает изменение требований при разработке программного обеспечения, что характерно для большинства разработок, в том числе и типовых;
  • в модели предусмотрена возможность гибкого проектирования, поскольку в ней воплощены преимущества каскадной модели, и в то же время разрешены итерации по всем фазам этой же модели;
  • позволяет получить более надежную и устойчивую систему. По мере развития программного обеспечения ошибки и слабые места обнаруживаются и исправляются на каждой итерации;
  • эта модель разрешает пользователям активно принимать участие при планировании, анализе рисков, разработке, а также при выполнении оценочных действий;
  • уменьшаются риски заказчика. Заказчик может с минимальными для себя финансовыми потерями завершить развитие неперспективного проекта;
  • обратная связь по направлению от пользователей к разработчикам выполняется с высокой частотой и на ранних этапах модели, что обеспечивает создание нужного продукта высокого качества.

Недостатки модели:

  • если проект имеет низкую степень риска или небольшие размеры, модель может оказаться дорогостоящей. Оценка рисков после прохождения каждой спирали связана с большими затратами;
  • Жизненный цикл модели имеет усложненную структуру, поэтому может быть затруднено её применение разработчиками, менеджерами и заказчиками;
  • спираль может продолжаться до бесконечности, поскольку каждая ответная реакция заказчика на созданную версию может порождать новый цикл, что отдаляет окончание работы над проектом;
  • большое количество промежуточных циклов может привести к необходимости в обработке дополнительной документации;
  • использование модели может оказаться дорогостоящим и даже недопустимым по средствам, т.к. время. затраченное на планирование, повторное определение целей, выполнение анализа рисков и прототипирование, может быть чрезмерным;
  • могут возникнуть затруднения при определении целей и стадий, указывающих на готовность продолжать процесс разработки на следующей и

Основная проблема спирального цикла — определение момента перехода на следующий этап. Для её решения вводятся временные ограничения на каждый из этапов жизненного цикла и переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. Планирование производится на основе статистических данных, полученных в предыдущих проектах и личного опыта разработчиков.

Область применения спиральной модели

Применение спиральной модели целесообразно в следующих случаях:

  • при разработке проектов, использующих новые технологии;
  • при разработке новой серии продуктов или систем;
  • при разработке проектов с ожидаемыми существенными изменениями или дополнениями требований;
  • для выполнения долгосрочных проектов;
  • при разработке проектов, требующих демонстрации качества и версий системы или продукта через короткий период времени;
  • при разработке проектов. для которых необходим подсчет затрат, связанных с оценкой и разрешением рисков.

В общем случае программная система помимо собственно программ содержит еще и аппаратное обеспечение, а также обычно рассматривается в окружении других программно-аппаратных систем.

Под жизненным циклом программной системы обычно понимают весь период времени существования программной системы, начинающийся с момента выработки первоначальной концепции системы и кончающийся тогда, когда система морально устаревает. Понятие ``жизненного цикла"" используется, когда предполагается, что программная система будет иметь достаточно большой срок действия, в отличие от экспериментального программирования, при котором программы прогоняются несколько раз и больше не используются.

Жизненный цикл традиционно моделируется в виде некоторого числа последовательных этапов (или стадий, фаз). В настоящее время не выработано общепринятого разбиения жизненного цикла программной системы на этапы. Иногда этап выделяется как отдельный пункт, иногда - входит в качестве составной части в более крупный этап. Могут варьироваться действия, производимые на том или ином этапе. Нет единообразия и в названиях этих этапов. Поэтому попытаемся вначале описать некоторый обобщенный жизненный цикл программной системы, а затем продемонстрируем несколько примеров различных жизненных циклов с указанием аналогий из этого обобщенного цикла.

Этапы жизненного цикла ПО

Жизненный цикл программного обеспечения - период разработки и эксплуатации программного обеспечения, в котором обычно выделяют этапы: -1- возникновение и исследование идеи; -2- анализ требований и проектирование; -3- программирование; -4- тестирование и отладка; -5- ввод программы в действие; -6- эксплуатация и сопровождение; -7- завершение эксплуатации.

Следует обратить внимание, что разбиение жизненного цикла на этапы иногда способствует затушевыванию некоторых важных аспектов создания программного обеспечения; особенно это проявляется по отношению к такому необходимому процессу, как итерационная реализация различных этапов жизненного цикла с целью исправления ошибок, изменения решений, которые оказались неправильными, или учета изменений в общих требованиях, предъявляемых к системе.

Примеры описания жизненного цикла

Рассмотрим несколько описаний жизненного цикла программного обеспечения, которые послужат своеобразным комментарием этапам обобщенного жизненного цикла.

В отечественных нормативных документах (например, ГОСТ ЕСПД) принято следующее разграничение на этапы, которое приводится с указанием аналогий из списка, данного в начале раздела:

    разработка технического задания (этапы 1 и 2);

    технический проект (третий этап до 3.2.1 включительно);

    рабочий проект (3.2.2, 4.2.1 и, частично, 4.2, 4.3);

    экспериментальное внедрение (4.2 и 4.3);

    сдача в промышленную эксплуатацию (этап 5);

    промышленная эксплуатация (этап 6).

Подобное описание имеет своим прообразом технологию разработки аппаратных средств и поэтому не вполне учитывает все отличительные особенности проектирования программ. Более подходящим выглядит описание жизненного цикла программного обеспечения, состоящее из 12 этапов, которые очень близки этапам обобщенного жизненного цикла (см. рис. 1.1). В скобках после имени фазы указывается аналог из обобщенного цикла. Практически все этапы заканчиваются проверкой результатов, полученных на соответствующем этапе.

Рис. 1.1 Пример жизненного цикла программных систем

    Начало проекта и планирование (этап 1). Определяются необходимые действия, планы и организация управления проектом. Определяются меры по обеспечению непрерывного выполнения фаз жизненного цикла.

    Анализ целевых требований (2.1). Определяются, без учета средств реализации, общие характеристики системы, которым она должна удовлетворять. Устанавливается, что и как должна делать система.

    Анализ системных требований (2.2). Описывается, как должны удовлетворятся запросы пользователя, в терминах конкретных функциональных понятий описываются действия предполагаемой системы, хранимые данные, используемый интерфейс - все это без учета физической реализации. Проверяется пригодность этих конкретных понятий.

    Проектирование системы (3.1). Устанавливается структура системы или, иначе говоря, ее архитектура в терминах основных компонентов этой системы и их предполагаемой реализации (аппаратной, программной, с помощью окружения и т.д.). Устанавливаются требования для каждого компонента, а также стратегию тестирования и интеграции.

    Предварительное проектирование программного обеспечения (3.2.1). Определение конкретных программных компонент, которые будут разрабатываться и внедряться в конечную систему. Проверка этого множества компонент на непротиворечивость общим требованиям к программному обеспечению. Определение функциональных, эксплуатационных и тестовых требований к каждому конкретному компоненту.

    Детальное проектирование программного обеспечения (3.2.2). В терминах используемых программных конструкций производится описание того, как каждый конкретный компонент будет разрабатываться. Описываются режимы использования каждого компонента в системе.

    Кодирование и тестирование программного обеспечения (4.1.1 и 4.1.2). Создание, тестирование отдельных модулей, документирование и приемка программных компонентов, которые составляют программную систему.

    Интеграция программного обеспечения (частично 4.2). Тестирование работоспособности и функциональной законченности программных частей системы в предсказуемом окружении (аппаратуре и окружающей среде).

    Интеграция системы (4.3). Тестирование работоспособности и функциональной законченности частей общей системы в целом.

    Приемка и поставка системы (5). Производится приемка системы заказчиком, и поставка ему системы.

    Эксплуатация и сопровождение системы (6). Выпуск последующих вариантов или версий системы, необходимость в которых возникает из-за устранений дефектов, отработки измененных требований и т.д.

    Завершение проекта (7). Формирование посториорной модели проектных действий с анализом достоинств, недостатков и т.д., и использование их в качестве основания для улучшения процесса разработки.

В качестве следующего примера рассмотрим неполный жизненный цикл программного обеспечения, без этапов эксплуатации и сопровождения (см. рис. 1.2). В этом варианте не фиксируется последовательность фаз или этапов, а предлагается перечень действий, которые должны быть выполнены на протяжении жизненного цикла программного обеспечения. Эти действия могут быть разбиты или, наоборот, сгруппированы в различные этапы, в зависимости от конкретных условий. Можно выделить следующие этапы жизненного цикла программных систем (в скобках, как и ранее, - аналоги из модели обобщенного цикла):

    этап планирования, который определяет и координирует действия по разработке программной системы (этап 1);

    этап разработки, на котором создается программная система:

    постановку задачи (этап 2),

    проектирование (3),

    кодирование (4.1.1),

    получение исполняемого кода (4.1.1, 4.3);

интегрированный этап, обеспечивающий коррекцию, проверку, и определение полноты программной системы, а также ее выпуск. Этот этап включает в себя верификацию, контроль за конфигурацией системы, оценку качества и проверку взаимодействия между этапами. Из названия этого этапа видно, что он выполняется совместно с другими этапами на протяжении жизненного цикла системы.

Рис. 1.2 Вариант упрощенного жизненного цикла программной системы.

Отсутствие интегрированного этапа в обобщенном жизненном цикле не означает, что проверка производится только там, где это явно указано в названии этапа (например 4.2.1 и 4.2). Каждый этап может считаться завершенным только тогда, когда результаты, полученные на данном этапе, были признаны удовлетворительными, а для этого необходимо производить проверку результатов на каждом этапе. В обобщенном жизненном цикле некоторые проверки были вынесены отдельными пунктами для демонстрации повышенных объемов, сложности и важности этих проверок.

Последовательность этапов жизненного цикла для разных программных систем определяется такими характеристиками как функциональные возможности, сложность, размер, устойчивость, использование ранее полученных результатов, разрабатываемая стратегия и аппаратное обеспечение.

На рис. 1.3. показана последовательность этапов разработки программного обеспечения для отдельных компонентов единой программной системы с различными жизненными циклами.

Рис. 1.3 Последовательность этапов разработки компонент программного обеспечения

Для компонента W из множества системных требований к единому продукту формируется подмножество требований, относящихся к данному компоненту, используются эти требования при формировании проекта программного компонента, реализовывают этот проект в исходном коде и тогда интегрирует компонент с аппаратурой. Компонент X показывает использование ранее разработанного программного обеспечения. Компонент Y показывает использование простой отдельной функции, которая может быть закодирована прямо на основе требований к программному обеспечению. Компонент Z показывает использование прототипной стратегии. Обычно, целями прототипирования является лучшее понимание требований к программному обеспечению и уменьшение технических рисков и рисков разработки при создании конечного продукта. Исходные требования используются как базис для получения прототипа. Этот прототип преобразуется в окружение, типичное для конкретного использования системы при разработке. Результатом преобразований является уточненные данные, которые используются для создания конечного программного продукта.

Практически все этапы жизненного цикла объединяются с верификацией.

Разработка ПО невозможна без понимания так называемого жизненного цикла программ. Рядовому юзеру это, может быть, и не нужно знать, но основные стандарты желательно усвоить (далее будет сказано, зачем это нужно).

Жизненный цикл что это такое в формальном понимании?

Под жизненным циклом любого принято понимать время его существования, начиная со стадии разработки и до момента полного отказа от использования в выбранной сфере применения вплоть до полного изъятия приложения из обихода.

Говоря простым языком, информационные системы в виде программ, баз данных или даже «операционок» являются востребованными только в случае актуальности данных и возможностей, ними предоставляемых.

Считается, что определение жизненного цикла ни в коей мере не применяется к тестовым приложениям, например, к бета-версиям, которые являются самыми неустойчивыми в работе. Сам же жизненный цикл ПО зависит от множества факторов, среди которых одну из главных ролей играет среда, в которой программа будет использоваться. Однако можно выделить и общие условия, применяемые при определении понятия жизненного цикла.

Начальные требования

  • постановка задачи;
  • анализ взаимных требований будущего ПО к системе;
  • проектирование;
  • программирование;
  • кодирование и компиляция;
  • тестирование;
  • отладка;
  • внедрение и сопровождение программного продукта.

Разработка ПО состоит из всех вышеупомянутых стадий и не может обойтись хотя бы без одной из них. Но для контроля для таких процессов установлены специальные стандарты.

Стандарты процессов жизненного цикла программного обеспечения

Среди систем, предопределяющих условия и требования, предъявляемые к таким процессам, сегодня можно назвать только три основных:

  • ГОСТ 34.601-90;
  • ISO/IEC 12207:2008;
  • Oracle CDM.

Для второго международного стандарта имеется российский аналог. Это ГОСТ Р ИСО/МЭК 12207-2010, отвечающий за системную и программную инженерию. Но жизненный цикл программного обеспечения, описываемый в обоих правилах, является идентичным по сути. Объясняется это достаточно просто.

Виды ПО и апдейты

Они, кстати, для большинства ныне известных программ мультимедиа являются средствами сохранения основных параметров конфигурации. Использование ПО такого типа, конечно, является достаточно ограниченным, но понимание общих принципов работы с теми же медиаплеерами не повредит. И вот, почему.

По сути-то, в них жизненный цикл программного обеспечения заложен только на уровне срока обновления версии самого проигрывателя или установки кодеков и декодеров. А звуковые и видео транскодеры являются неотъемлемыми атрибутами любой аудио или видеосистемы.

Пример на основе программы FL Studio

Изначально виртуальная студия-секвенсор FL Studio имела название Fruity Loops. Жизненный цикл ПО в его первичной модификации истек, но приложение несколько трансформировалось и приобрело нынешний вид.

Если говорить об этапах жизненного цикла, сначала на стадии постановки задачи задавалось несколько обязательных условий:

  • создание барабанного модуля по типу ритм-машин вроде Yamaha RX, но с применением one-shot-сэмплов или секвенций в формате WAV, записанных в студиях вживую;
  • интеграция в операционные системы Windows;
  • возможность экспорта проекта в форматах WAV, MP3 и OGG;
  • совместимость проектов с дополнительным приложением Fruity Tracks.

На стадии разработки были применены средства языков программирования «Си». Но платформа выглядела достаточно примитивно и не давала конечному пользователю необходимого качества звучания.

В связи с этим, на стадии тестирования и отладки разработчикам пришлось пойти по пути немецкой корпорации Steinberg и применить в требованиях к основному звуковому драйверу поддержку режима Full Duplex. Качество саунда стало выше и позволило изменять темп, высоту тона и накладывать дополнительные FX-эффекты в режиме реального времени.

Завершением жизненного цикла этого ПО принято считать выход первой официальной версии FL Studio, которая, в отличие от своих прародителей, обладала уже интерфейсом полноценного секвенсора с возможностью редактирования параметров на виртуальном 64-канальном микшерном пульте с неограниченным добавлением аудио-дорожек и MIDI-треков.

Этим не ограничилось. На стадии управления проектом была введена поддержка подключения плагинов формата VST (сначала второй, а потом и третьей версии), в свое время разработанного компанией Steinberg. Грубо говоря, любой виртуальный синтезатор, поддерживающий VST-host мог подключаться к программе.

Неудивительно, что вскоре любой композитор мог использовать аналоги «железных» моделей, например, полные комплекты звуков некогда популярного Korg M1. Дальше - больше. Применение модулей вроде Addictive Drums или универсального плагина Kontakt позволило воспроизводить живые звуки реальных инструментов, записанных со всеми оттенками артикуляции в профессиональных студиях.

При этом разработчики постарались добиться и максимального качества, создав поддержку для драйверов ASIO4ALL, которые оказались на голову выше режима Full Duplex. Соответственно, повысился и битрейт. На сегодняшний день качество экспортируемого звукового файла может составлять 320 кбит/с при частоте дискретизации 192 кГц. А это профессиональный звук.

Что же касается начальной версии, ее жизненный цикл можно было бы назвать полностью законченным, но такое утверждение является относительным, поскольку приложение только сменило название и обрело новые возможности.

Перспективы развития

Что собой представляют этапы жизненного цикла программного обеспечения, уже понятно. Но вот о развитии таких технологий стоит сказать отдельно.

Не нужно говорить, что любой разработчик программного обеспечения не заинтересован в создании мимолетного продукта, который едва ли удержится на рынке в течение нескольких лет. В перспективе все смотрят на долгосрочное его использование. Достигаться это может разными способами. Но, как правило, практически все они сводятся к выпуску обновлений или новых версий программ.

Даже в случае с ОС Windows такие тенденции можно заметить невооруженным взглядом. Вряд ли сегодня найдется хоть один юзер, использующий системы вроде модификаций 3.1, 95, 98 или Millennium. Их жизненный цикл закончился после выхода версии XP. Но вот серверные версии на основе технологий NT все еще актуальны. Даже Windows 2000 на сегодняшний день является не только весьма актуальной, но и по некоторым параметрам установки или безопасности даже превосходящей самые новые разработки. То же самое касается системы NT 4.0, а также специализированной модификации Windows Server 2012.

Но по отношению именно к этим системам все равно заявлена поддержка на самом высоком уровне. А вот нашумевшая в свое время Vista явно испытывает закат цикла. Мало того, что она оказалась недоработанной, так еще и ошибок в ней самой и прорех в ее системе безопасности было столько, что остается только догадываться о том, как можно было выпустить на рынок программных продуктов такое несостоятельное решение.

Но если говорить о том, что развитие ПО любого типа (управляющего или прикладного) не стоит на месте, можно только Ведь сегодня дело касается не только компьютерных систем, а и мобильных устройств, в которых применяемые технологии зачастую опережают компьютерный сектор. Появление процессорных чипов на основе восьми ядер - чем не самый лучший пример? А ведь еще далеко не каждый ноутбук может похвастаться наличием такого «железа».

Некоторые дополнительные вопросы

Что же касается понимания жизненного цикла программного обеспечения, сказать, что он закончился в некоторый определенный момент времени, можно весьма условно, ведь программные продукты все равно имеют поддержку со стороны разработчиков, их создававших. Скорее окончание относится к устаревшим приложениям, которые не отвечают требованиям современных систем и не могут работать в их среде.

Но даже с учетом технического прогресса многие из них уже в ближайшее время могут оказаться несостоятельными. Вот тогда и придется принимать решение либо о выпуске обновлений, либо о полном пересмотре всей концепции, изначально заложенной в программный продукт. Отсюда - и новый цикл, предусматривающий изменение начальных условий, среды разработки, тестирования и возможного долгосрочного применения в определенной сфере.

Но в компьютерных технологиях сегодня отдается предпочтение развитию автоматизированных систем управления (АСУ), которые применяются на производстве. Даже операционные системы, в сравнении со специализированными программами, проигрывают.

Те же среды на основе Visual Basic остаются намного более популярными, нежели Windows-системы. А о прикладном ПО под UNIX-системы речь не идет вообще. Что говорить, если практически все коммуникационные сети тех же Соединенных Штатов работают исключительно на них. Кстати, системы вроде Linux и Android тоже изначально создавались именно на этой платформе. Поэтому, скорее всего, у UNIX перспектив намного больше, чем у остальных продуктов вместе взятых.

Вместо итога

Остается добавить, что в данном случае приведены только общие принципы и этапы жизненного цикла программного обеспечения. На самом деле даже начально поставленные задачи могут разниться очень существенно. Соответственно, различия могут наблюдаться и на остальных стадиях.

Но основные технологии разработки программных продуктов с их последующим сопровождением должны быть понятны. В остальном же следует учитывать и специфику создаваемого ПО, и среды, в которых оно предположительно должно работать, и возможности программ, предоставляемые конечному пользователю или производству, и многое другое.

К тому же, иногда жизненные циклы могут зависеть от актуальности средств разработки. Если, допустим, какой-то язык программирования устаревает, никто же не будет писать программы на его основе, и уж тем более - внедрять их в автоматизированные системы управления на производстве. Тут уже на первый план выходят даже не программисты, а маркетологи, которые должны своевременно реагировать на изменения компьютерного рынка. И таких специалистов в мире найдется не так уж и много. Высококвалифицированные кадры, способные держать руку на пульсе рынка, становятся наиболее востребованными. И именно они зачастую являются так называемыми «серыми кардиналами», от которых зависит успех или проигрыш определенного программного продукта в сфере IT.

Пусть они не всегда понимают суть программирования, зато четко способны определить модели жизненного цикла программного обеспечения и продолжительности времени их применения, исходя из мировых тенденций в этой области. Эффективный менеджмент зачастую дает более ощутимые результаты. Да хотя бы PR-технологии, реклама и т. д. Может какое-то приложение пользователю и не нужно, зато при условии его активного афиширования юзер установит его. Это уже, так сказать, подсознательный уровень (тот же эффект 25-го кадра, когда информация закладывается в сознание юзера независимо от него самого).

Конечно, такие технологии в мире являются запрещенными, однако многие из нас даже не догадываются о том, что они все равно могут использоваться и воздействовать на подсознание определенным способом. Чего только стоит «зомбирование» новостными каналами или интернет-сайтами, не говоря уже о применении более мощных средств, вроде воздействия инфразвуком (такое было применено в одной оперной постановке), вследствие чего человек может испытывать страх или неадекватные эмоции.

Возвращаясь к программному обеспечению, стоит добавить, что некоторые программы при запуске используют звуковой сигнал, привлекающий внимание юзера. И, как показывают исследования, такие приложения оказываются более жизнеспособными, в сравнении с другими программами. Естественно, увеличивается и жизненный цикл ПО, без разницы, какая функция на него возложена изначально. И этим, к сожалению, пользуются многие разработчики, что вызывает сомнения в законности таких методов.

Но не нам судить об этом. Возможно, в ближайшее время будут разработаны средства, определяющие такие угрозы. Пока это только теория, но, как считают некоторые аналитики и эксперты, до практического применения осталось совсем немного. Если уже создают копии нейронных сетей человеческого мозга, то что говорить?

Здравствуйте, уважаемые хабровчане! Думаю будет кому-то интересно вспомнить какие модели разработки, внедрения и использования программного обеспечения существовали ранее, какие модели в основном используются сейчас, зачем и что это собственно такое. В этом и будет заключаться моя небольшая тема.

Собственно, что же такое жизненный цикл программного обеспечения - ряд событий, происходящих с системой в процессе ее создания и дальнейшего использования. Говоря другими словами, это время от начального момента создания какого либо программного продукта, до конца его разработки и внедрения. Жизненный цикл программного обеспечения можно представить в виде моделей.

Модель жизненного цикла программного обеспечения - структура, содержащая процессы действия и задачи, которые осуществляются в ходе разработки, использования и сопровождения программного продукта.
Эти модели можно разделить на 3 основных группы:

  1. Инженерный подход
  2. С учетом специфики задачи
  3. Современные технологии быстрой разработки
Теперь рассмотрим непосредственно существующие модели (подклассы) и оценим их преимущества и недостатки.

Модель кодирования и устранения ошибок

Совершенно простая модель, характерная для студентов ВУЗов. Именно по этой модели большинство студентов разрабатывают, ну скажем лабораторные работы.
Данная модель имеет следующий алгоритм:
  1. Постановка задачи
  2. Выполнение
  3. Проверка результата
  4. При необходимости переход к первому пункту
Модель также ужасно устаревшая. Характерна для 1960-1970 гг., по-этому преимуществ перед следующими моделями в нашем обзоре практически не имеет, а недостатки на лицо. Относится к первой группе моделей.

Каскадная модель жизненного цикла программного обеспечения (водопад)

Алгоритм данного метода, который я привожу на схеме, имеет ряд преимуществ перед алгоритмом предыдущей модели, но также имеет и ряд весомых недостатков.

Преимущества:

  • Последовательное выполнение этапов проекта в строгом фиксированном порядке
  • Позволяет оценивать качество продукта на каждом этапе
Недостатки:
  • Отсутствие обратных связей между этапами
  • Не соответствует реальным условиям разработки программного продукта
Относится к первой группе моделей.

Каскадная модель с промежуточным контролем (водоворот)

Данная модель является почти эквивалентной по алгоритму предыдущей модели, однако при этом имеет обратные связи с каждым этапом жизненного цикла, при этом порождает очень весомый недостаток: 10-ти кратное увеличение затрат на разработку . Относится к первой группе моделей.

V модель (разработка через тестирование)

Данная модель имеет более приближенный к современным методам алгоритм, однако все еще имеет ряд недостатков. Является одной из основных практик экстремального программирования.

Модель на основе разработки прототипа

Данная модель основывается на разработки прототипов и прототипирования продукта.
Прототипирование используется на ранних стадиях жизненного цикла программного обеспечения:
  1. Прояснить не ясные требования (прототип UI)
  2. Выбрать одно из ряда концептуальных решений (реализация сцинариев)
  3. Проанализировать осуществимость проекта
Классификация протопипов:
  1. Горизонтальные и вертикальные
  2. Одноразовые и эволюционные
  3. бумажные и раскадровки
Горизонтальные прототипы - моделирует исключительно UI не затрагивая логику обработки и базу данных.
Вертикальные прототипы - проверка архитектурных решений.
Одноразовые прототипы - для быстрой разработки.
Эволюционные прототипы - первое приближение эволюционной системы.

Модель принадлежит второй группе.

Спиральная модель жизненного цикла программного обеспечения

Спиральная модель представляет собой процесс разработки программного обеспечения, сочетающий в себе как проектирование, так и постадийное прототипирование с целью сочетания преимуществ восходящей и нисходящей концепции.

Преимущества:

  • Быстрое получение результата
  • Повышение конкурентоспособности
  • Изменяющиеся требования - не проблема
Недостатки:
  • Отсутствие регламентации стадий
Третьей группе принадлежат такие модели как экстремальное программирование (XP), SCRUM , инкриментальная модель (RUP), но о них я бы хотел рассказать в отдельном топике.

Большое спасибо за внимание!