Для чего нужны атомные электростанции. Что такое АЭС? История и особенности ядерной энергетики

Для чего нужны атомные электростанции. Что такое АЭС? История и особенности ядерной энергетики

А́ТОМНАЯ ЭЛЕКТРОСТА́НЦИЯ (АЭС), элек­тро­стан­ция, на ко­то­рой для по­лу­че­ния элек­тро­энер­гии ис­поль­зу­ет­ся те­п­ло­та, вы­де­ляю­щая­ся в ядер­ном ре­ак­то­ре в ре­зуль­та­те кон­тро­ли­руе­мой цеп­ной ре­ак­ции де­ле­ния ядер тя­жё­лых эле­мен­тов (в осн. $\ce{^{233}U, ^{235}U, ^{239}Pu}$ ). Те­п­ло­та, об­ра­зую­щая­ся в ак­тив­ной зо­не ядер­но­го ре­ак­то­ра, пе­ре­да­ёт­ся (не­по­сред­ст­вен­но ли­бо че­рез про­ме­жу­точ­ный те­п­ло­но­си­тель ) ра­бо­че­му те­лу (пре­им. во­дя­но­му па­ру), ко­то­рое при­во­дит в дей­ст­вие па­ро­вые тур­би­ны с тур­бо­ге­не­ра­то­ра­ми.

АЭC в принципе является аналогом обычной тепловой электростанции (ТЭС), в которой вместо топки парового котла используется ядерный реактор. Однако при сходстве принципиальных термодинамических схем ядерных и тепловых энергоустановок между ними есть и существенные различия. Основными из них являются экологические и экономические преимущества АЭС перед ТЭС: АЭС не нуждаются в кислороде для сжигания топлива; они практически не загрязняют окружающую среду сернистыми и др. газами; ядерное топливо имеет значительно более высокую теплотворную способность (при делении 1г изотопов U или Pu высвобождается 22 500 кВт∙ч, что эквивалентно энергии, содержащейся в 3000 кг каменного угля), что резко сокращает его объёмы и расходы на транспортировку и обращение; мировые энергетические ресурсы ядерного топлива существенно превышают природные запасы углеводородного топлива. Кроме того, применение в качестве источника энергии ядерных реакторов (любого типа) требует изменения тепловых схем, принятых на обычных ТЭС, и введения в структуру АЭС новых элементов, напр. биологич. защиты (см. Радиационная безопасность ), системы перегрузки отработанного топлива, бассейна выдержки топлива и др. Передача тепловой энергии от ядерного реактора к паровым турбинам осуществляется посредством теплоносителя, циркулирующего по герметичным трубопроводам, в сочетании с циркуляционными насосами, образующими т. н. реакторный контур или петлю. В качестве теплоносителей применяют обычную и тяжёлую воду, водяной пар, жидкие металлы, органические жидкости, некоторые газы (например, гелий, углекислый газ). Контуры, по которым циркулирует теплоноситель, всегда замкнуты во избежание утечки радиоактивности, их число определяется в основном типом ядерного реактора, а также свойствами рабочего тела и теплоносителя.

На АЭС с одноконтурной схемой (рис., а ) теплоноситель является также и рабочим телом, весь контур радиоактивен и потому окружён биологической защитой. При использовании в качестве теплоносителя инертного газа, например гелия, который не активируется в нейтронном поле активной зоны, биологическая защита необходима только вокруг ядерного реактора, поскольку теплоноситель не радиоактивен. Теплоноситель – рабочее тело, нагреваясь в активной зоне реактора, затем поступает в турбину, где его тепловая энергия преобразуется в механическую и далее в электрогенераторе – в электрическую. Наиболее распространены одноконтурные АЭС с ядерными реакторами, в которых теплоносителем и замедлителем нейтронов служит вода. Рабочее тело образуется непосредственно в активной зоне при нагревании теплоносителя до кипения. Такие реакторы называют кипящими, в мировой ядерной энергетике они обозначаются как BWR (Boiling Water Reactor). В России получили распространение кипящие реакторы с водяным теплоносителем и графитовым замедлителем – РБМК (реактор большой мощности канальный). Перспективным считается использование на АЭС высокотемпературных газоохлаждаемых реакторов (с гелиевым теплоносителем) – ВТГР (HTGR). Кпд одноконтурных АЭС, работающих в закрытом газотурбинном цикле, может превышать 45–50%.

При двухконтурной схеме (рис., б ) нагретый в активной зоне теплоноситель первого контура передаёт в парогенераторе (теплообменнике ) тепловую энергию рабочему телу во втором контуре, после чего циркуляционным насосом возвращается в активную зону. Первичным теплоносителем может быть вода, жидкий металл или газ, а рабочим телом вода, превращающаяся в водяной пар в парогенераторе. Первый контур радиоактивен и окружается биологической защитой (кроме тех случаев, когда в качестве теплоносителя используется инертный газ). Второй контур обычно радиационно безопасен, поскольку рабочее тело и теплоноситель первого контура не соприкасаются. Наибольшее распространение получили двухконтурные АЭС с реакторами, в которых первичным теплоносителем и замедлителем служит вода, а рабочим телом – водяной пар. Этот тип реакторов обозначают как ВВЭР – водо-водяной энергетич. реактор (PWR – Power Water Reactor). Кпд АЭС с ВВЭР достигает 40%. По термодинамической эффективности такие АЭС уступают одноконтурным АЭС с ВТГР, если температура газового теплоносителя на выходе из активной зоны превышает 700 °С.

Трёхконтурные тепловые схемы (рис., в ) применяют лишь в тех случаях, когда необходимо полностью исключить контакт теплоносителя первого (радиоактивного) контура с рабочим телом; например, при охлаждении активной зоны жидким натрием его контакт с рабочим телом (водяным паром) может привести к крупной аварии. Жидкий натрий как теплоноситель применяют только в ядерных реакторах на быстрых нейтронах (FBR – Fast Breeder Reactor). Особенность АЭС с реактором на быстрых нейтронах состоит в том, что одновременно с выработкой электрической и тепловой энергии они воспроизводят делящиеся изотопы, пригодные для использования в тепловых ядерных реакторах (см. Реактор-размножитель ).

Турбины АЭС обычно работают на насыщенном или слабоперегретом паре. При использовании турбин, работающих на перегретом паре, насыщенный пар для повышения температуры и давления пропускают через активную зону реактора (по особым каналам) либо через специальный теплообменник – пароперегреватель, работающий на углеводородном топливе. Термодинамическая эффективность цикла АЭС тем выше, чем выше параметры теплоносителя, рабочего тела, которые определяются технологическими возможностями и свойствами конструкционных материалов, применяемых в контурах охлаждения АЭС.

На АЭС боль­шое вни­ма­ние уде­ля­ют очи­ст­ке те­п­ло­но­си­те­ля, по­сколь­ку имею­щие­ся в нём ес­тественные при­ме­си, а так­же про­дук­ты кор­ро­зии, на­ка­п­ли­ваю­щие­ся в про­цес­се экс­плуа­та­ции обо­ру­до­ва­ния и тру­бо­про­во­дов, яв­ля­ют­ся ис­точ­ни­ка­ми ра­дио­ак­тив­но­сти. Сте­пень чис­то­ты те­п­ло­но­си­те­ля во мно­гом оп­ре­де­ля­ет уро­вень ра­ди­ационной об­ста­нов­ки в по­ме­ще­ни­ях АЭС.

АЭС прак­ти­че­ски все­гда стро­ят вбли­зи по­тре­би­те­лей энер­гии, т. к. рас­хо­ды на транс­пор­ти­ров­ку ядер­но­го то­п­ли­ва на АЭС, в от­ли­чие от уг­ле­во­до­род­но­го то­п­ли­ва для ТЭС, ма­ло влия­ют на се­бе­стои­мость вы­ра­ба­ты­вае­мой энер­гии (обыч­но ядер­ное то­п­ли­во в энер­ге­тич. ре­ак­то­рах за­ме­ня­ют на но­вое один раз в неск. лет), а пе­ре­да­ча как элек­трической, так и те­п­ло­вой энер­гии на боль­шие рас­стоя­ния за­мет­но по­вы­ша­ет их стои­мость. АЭС со­ору­жа­ют с под­вет­рен­ной сто­ро­ны от­но­си­тель­но бли­жай­ше­го на­се­лён­но­го пунк­та, во­круг неё соз­да­ют са­ни­тар­но-за­щит­ную зо­ну и зо­ну на­блю­де­ния, где про­жи­ва­ние на­се­ле­ния не­до­пус­ти­мо. В зо­не на­блю­де­ния раз­ме­ща­ют кон­троль­но-из­ме­ри­тель­ную ап­па­ра­ту­ру для по­сто­ян­но­го мо­ни­то­рин­га ок­ру­жаю­щей сре­ды.

АЭС – ос­но­ва ядер­ной энер­ге­ти­ки . Глав­ное их на­зна­че­ние – про­изводство элек­тро­энер­гии (АЭС кон­ден­са­ци­он­но­го ти­па) или ком­би­нированное про­изводство элек­тро­энер­гии и те­п­ла (атом­ные те­п­ло­элек­тро­цен­тра­ли – АТЭЦ). На АТЭЦ часть от­ра­бо­тав­ше­го в тур­би­нах па­ра от­во­дит­ся в т. н. се­те­вые те­п­ло­об­мен­ни­ки для на­гре­ва­ния во­ды, цир­ку­ли­рую­щей в замк­ну­тых се­тях те­п­ло­снаб­же­ния. В отдельных слу­ча­ях те­п­ло­вая энер­гия ядер­ных ре­ак­то­ров мо­жет ис­поль­зо­вать­ся толь­ко для нужд те­п­ло­фи­ка­ции (атом­ные стан­ции те­п­ло­снаб­же­ния – АСТ). В этом слу­чае на­гре­тая во­да из те­п­ло­об­мен­ни­ков пер­во­го-вто­ро­го кон­ту­ров по­сту­па­ет в се­те­вой те­п­ло­об­мен­ник, где от­да­ёт те­п­ло се­те­вой во­де и за­тем воз­вра­ща­ет­ся в кон­тур.

Од­но из пре­иму­ществ АЭС по срав­не­нию с обыч­ны­ми ТЭС – их вы­со­кая эко­ло­гич­ность, со­хра­няю­щая­ся при ква­ли­фи­цир. экс­плуа­та­ции ядер­ных ре­ак­то­ров. Су­ще­ст­вую­щие барь­е­ры ра­ди­ационной безо­пас­но­сти АЭС (обо­лоч­ки твэ­лов, кор­пус ядер­но­го ре­ак­то­ра и т. п.) пред­от­вра­ща­ют за­гряз­не­ние те­п­ло­но­си­те­ля ра­дио­ак­тив­ны­ми про­дук­та­ми де­ле­ния. Над ре­ак­тор­ным за­лом АЭС воз­во­дит­ся за­щит­ная обо­лоч­ка (кон­тей­мент) для ис­клю­че­ния по­па­да­ния в ок­ру­жаю­щую сре­ду ра­дио­ак­тив­ных ма­те­риа­лов при са­мой тя­жё­лой ава­рии – раз­гер­ме­ти­за­ции пер­во­го кон­ту­ра, рас­плав­ле­нии ак­тив­ной зо­ны. Под­го­тов­ка пер­со­на­ла АЭС пре­ду­смат­ри­ва­ет обу­че­ние на специальных тре­на­жё­рах (ими­та­то­рах АЭС) для от­ра­бот­ки дей­ст­вий как в штат­ных, так и в ава­рий­ных си­туа­ци­ях. На АЭС име­ется ряд служб, обес­пе­чи­ваю­щих нор­маль­ное функ­цио­ни­ро­ва­ние стан­ции, безо­пас­ность её пер­со­на­ла (напр., до­зи­мет­рический кон­троль, обес­пе­че­ние са­ни­тар­но-ги­гие­нических тре­бо­ва­ний и др.). На тер­ри­то­рии АЭС соз­да­ют временные хра­ни­ли­ща для све­же­го и от­ра­бо­тан­но­го ядер­но­го то­п­ли­ва, для жид­ких и твёр­дых ра­дио­ак­тив­ных от­хо­дов, по­яв­ляю­щих­ся при её экс­плуа­та­ции. Всё это при­во­дит к то­му, что стои­мость ус­та­нов­лен­но­го ки­ло­ват­та мощ­но­сти на АЭС бо­лее чем на 30% пре­вы­ша­ет стои­мость ки­ло­ват­та на ТЭС. Од­на­ко стои­мость от­пус­кае­мой по­тре­би­те­лю энер­гии, вы­ра­бо­тан­ной на АЭС, ни­же, чем на ТЭС, из-за очень ма­лой до­ли в этой стои­мо­сти то­п­лив­ной со­став­ляю­щей. Вслед­ст­вие вы­со­кой эко­но­мич­но­сти и осо­бен­но­стей ре­гу­ли­ро­ва­ния мощ­но­сти АЭС обыч­но ис­поль­зу­ют в ба­зо­вых ре­жи­мах, при этом ко­эффициент ис­поль­зо­ва­ния ус­та­нов­лен­ной мощ­но­сти АЭС мо­жет пре­вы­шать 80%. По ме­ре уве­ли­че­ния до­ли АЭС в об­щем энер­ге­тическом ба­лан­се ре­гио­на они мо­гут ра­бо­тать и в ма­нёв­рен­ном ре­жи­ме (для по­кры­тия не­рав­но­мер­но­стей на­груз­ки в ме­ст­ной энер­го­сис­те­ме). Спо­соб­ность АЭС ра­бо­тать дли­тель­ное вре­мя без сме­ны то­п­ли­ва по­зво­ля­ет ис­поль­зо­вать их в уда­лён­ных ре­гио­нах. Раз­ра­бо­та­ны АЭС, ком­по­нов­ка обо­ру­до­ва­ния ко­то­рых ос­но­ва­на на прин­ци­пах, реа­ли­зуе­мых в су­до­вых ядер­ных энер­ге­тич. ус­та­нов­ках (см. Ато­мо­ход ). Та­кие АЭС мож­но раз­мес­тить, напр., на бар­же. Пер­спек­тив­ны АЭС с ВТГР, вы­ра­ба­ты­ваю­щие те­п­ло­вую энер­гию для осу­ще­ст­в­ле­ния тех­но­ло­гических про­цес­сов в ме­тал­лур­гическом, хи­мическом и неф­тяном про­из­вод­ст­вах, при га­зи­фи­ка­ции уг­ля и слан­цев, в про­изводстве син­те­тического угле­во­до­род­но­го то­п­ли­ва. Срок экс­плуа­та­ции АЭС 25–30 лет. Вы­вод АЭС из экс­плуа­та­ции, де­мон­таж ре­ак­то­ра и ре­куль­ти­ва­ция её пло­щад­ки до со­стоя­ния «зе­лё­ной лу­жай­ки» – слож­ное и до­ро­го­стоя­щее ор­га­ни­за­ци­он­но-тех­ническое ме­ро­прия­тие, осу­ще­ст­в­ляе­мое по раз­ра­ба­ты­вае­мым в ка­ж­дом кон­крет­ном слу­чае пла­нам.

Первая в мире действующая АЭС мощностью 5000 кВт пущена в России в 1954 в г. Обнинск. В 1956 вступила в строй АЭС в Колдер-Холле в Великобритании (46 МВт), в 1957 – АЭС в Шиппингпорте в США (60 МВт). В 1974 пущена первая в мире АТЭЦ – Билибинская (Чукотский автономный окр.). Массовое строительство крупных экономичных АЭС началось во 2-й пол. 1960-х гг. Однако после аварии (1986) на Чернобыльской АЭС привлекательность ядерной энергетики заметно снизилась, а в ряде стран, имеющих достаточные собственные традиционные топливно-энергетические ресурсы или доступ к ним, строительство новых АЭС фактически прекратилось (Россия, США, Великобритания, ФРГ). В начале 21в., 11.3.2011 в Тихом океане у восточного побережья Японии в результате сильнейшего землетрясения магнитудой от 9,0 до 9,1 и последовавшего за ним цунами (высота волн достигала 40,5 м) на АЭС « Фукусима1 » (посёлок Окума, префектура Фукусима) произошла крупнейшая техногенная катастрофа – радиационная авария максимального 7-го уровня по Международной шкале ядерных событий. Удар цунами вывел из строя внешние средства электроснабжения и резервные дизельные генераторы, что явилось причиной неработоспособности всех систем нормального и аварийного охлаждения и привело к расплавлению активной зоны реакторов на энергоблоках 1, 2 и 3 в первые дни развития аварии. В декабре 2013 АЭС была официально закрыта. По состоянию на первую половину 2016 высокий уровень излучения делает невозможной работу не только людей в реакторных зданиях, но и роботов, которые из-за высокого уровня радиации выходят из строя. Планируется, что вывоз пластов почвы в специальные хранилища и её уничтожение займут 30 лет.

31 страна мира использует АЭС. На 2015 действует ок. 440 ядерных энергетических реакторов (энергоблоков) суммарной мощностью более 381 тыс. МВт (381 ГВт). Ок. 70 атомных реакторов находятся в стадии строительства. Мировым лидером по доле в общей выработке электроэнергии является Франция (второе место по установленной мощности), в которой ядерная энергетика составляет 76,9%.

Крупнейшая АЭС в мире на 2015 (по установленной мощности) – Касивадзаки-Карива (г. Касивадзаки, префектура Ниигата, Япония). В эксплуатации находятся 5 кипящих ядерных реакторов (BWR) и 2 улучшенных кипящих ядерных реактора (ABWR), суммарная мощность которых составляет 8212 МВт (8,212 ГВт).

Крупнейшая АЭС в Европе – Запорожская АЭС (г. Энергодар, Запорожская область, Украина). С 1996 работают 6 энергоблоков с реакторами типа ВВЭР-1000 суммарной мощностью 6000 МВт (6 ГВт).

Таблица 1. Крупнейшие потребители ядерной энергетики в мире
Государство Количество энергоблоков Суммарная мощность (МВт) Суммарная вырабатываемая
электроэнергия (млрд. кВт·ч/год)
США 104 101 456 863,63
Франция 58 63 130 439,74
Япония 48 42 388 263,83
Россия 34 24 643 177,39
Южная Корея 23 20 717 149,2
Китай 23 19 907 123,81
Канада 19 13 500 98,59
Украина 15 13 107 83,13
Германия 9 12 074 91,78
Великобритания 16 9373 57,92

США и Япония ведут разработки мини-АЭС, мощностью порядка 10–20 МВт для тепло- и электроснабжения отдельных производств, жилых комплексов, а в перспективе – и индивидуальных домов. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

В России на 2015 действует 10 АЭС, на которых эксплуатируются 34 энергоблока общей мощностью 24 643 МВт (24,643 ГВт), из них 18 энергоблоков с реакторами типа ВВЭР (из них 11 энергоблоков ВВЭР-1000 и 6 энергоблоков ВВЭР-440 различных модификаций); 15 энергоблоков с канальными реакторами (11 энергоблоков с реакторами типа РБМК-1000 и 4 энергоблока с реакторами типа ЭГП-6 – Энергетический Гетерогенный Петлевой реактор с 6 петлями циркуляции теплоносителя, электрической мощностью 12 МВт); 1 энергоблок с реактором на быстрых нейтронах с натриевым охлаждением БН-600 (в процессе ввода в промышленную эксплуатацию находится 1 энергоблок БН-800). Согласно Федеральной целевой программе «Развитие атомного энергопромышленного комплекса России», к 2025 доля электроэнергии, выработанной на атомных электростанциях РФ, должна увеличиться с 17 до 25% и составить ок. 30,5 ГВт. Планируется построить 26 новых энергоблоков, 6 новых АЭС, две из которых – плавучие (табл. 2).

Таблица 2. АЭС, действующие на территории РФ
Наименование АЭС Количество энергоблоков Годы ввода в эксплуа-тацию энерго-блоков Суммарная установ-ленная мощность (МВт) Тип реактора
Балаковская АЭС (близ г. Балаково) 4 1985, 1987, 1988, 1993 4000 ВВЭР-1000
Калининская АЭС [в 125 км от Твери на берегу реки Удомля (Тверская обл.)] 4 1984, 1986, 2004, 2011 4000 ВВЭР-1000
Курская АЭС (близ г. Курчатов на левом берегу реки Сейм) 4 1976, 1979, 1983, 1985 4000 РБМК-1000
Ленинградская АЭС (близ г. Сосновый Бор) 4 в стадии строительства – 4 1973, 1975, 1979, 1981 4000 РБМК-1000 (первая в стране станция с реакторами этого типа)
Ростовская АЭС (расположена на берегу Цимлянского водохранилища, в 13,5 км от г. Волгодонск) 3 2001, 2010, 2015 3100 ВВЭР-1000
Смоленская АЭС (в 3 км от города-спутника Десногорск) 3 1982, 1985, 1990 3000 РБМК-1000
Нововоронежская АЭС (близ г. Нововоронеж) 5; (2 – выведены), в стадии строительства – 2. 1964 и 1969 (выведены), 1971, 1972, 1980 1800 ВВЭР-440;
ВВЭР-1000
Кольская АЭС (в 200 км к югу от г. Мурманск на берегу озера Имандра) 4 1973, 1974, 1981, 1984 1760 ВВЭР-440
Белоярская АЭС (близ г. Заречный) 2 1980, 2015 600
800
БН-600
БН-800
Билибинская АЭС 4 1974 (2), 1975, 1976 48 ЭГП-6

Проектируемые АЭС в РФ

С 2008 по новому проекту АЭС-2006 (проект российской атомной станции нового поколения «3+» с улучшенными технико-экономическими показателями) строится Нововоронежская АЭС-2 (близ Нововоронежской АЭС), на которой предусматривается использование реакторов ВВЭР-1200. Ведётся сооружение 2 энергоблоков общей мощностью 2400 МВт, в дальнейшем планируется построить ещё 2. Пуск первого блока (блок № 6) Нововоронежской АЭС-2 состоялся в 2016, второго блока № 7 запланирован на 2018.

Балтийская АЭС предусматривает использование реакторной установки ВВЭР-1200 мощностью 1200 МВт; энергоблоков – 2. Суммарная установленная мощность 2300 МВт. Ввод в эксплуатацию первого блока планируется в 2020. Федеральным агентством по атомной энергии России ведётся проект по созданию плавучих атомных электростанций малой мощности. Строящаяся АЭС «Академик Ломоносов» станет первой в мире плавучей атомной электростанцией. Плавучая станция может использоваться для получения электрической и тепловой энергии, а также для опреснения морской воды. В сутки она может выдавать от 40 до 240 тыс. м 2 пресной воды. Установленная электрическая мощность каждого реактора – 35 МВт. Ввод станции в эксплуатацию планируется в 2018.

Международные проекты России по атомной энергетике

23.9.2013 Россия передала Ирану в эксплуатацию АЭС «Бушер» («Бушир») , близ г. Бушир (остан Бушир); количество энергоблоков – 3 (1 построен, 2 – в стадии сооружения); тип реактора – ВВЭР-1000. АЭС «Куданкулам», близ г. Куданкулам (штат Тамилнад, Индия); количество энергоблоков – 4 (1 – в эксплуатации, 3 – в стадии сооружения); тип реактора – ВВЭР-1000. АЭС «Akkuyu», близ г. Мерсин (иль Мерсин, Турция); количество энергоблоков – 4 (в стадии сооружения); тип реактора – ВВЭР-1200; Белорусская АЭС (г. Островец, Гродненская область, Белоруссия); количество энергоблоков – 2 (в стадии сооружения); тип реактора – ВВЭР-1200. АЭС «Hanhikivi 1» (мыс Ханхикиви, область Похйойс-Похьянмаа, Финляндия); количество энергоблоков – 1 (в стадии сооружения); тип реактора – ВВЭР-1200.

Атомные электростанции

Атомные электростанции представляют собой, ядерные установки производящие энергию, соблюдая при этом заданные режимы при определённых условиях. Для этих целей используется определённая проектом территория, где для выполнения поставленных задач используют ядерные реакторы в комплексе с необходимыми системами, устройствами, оборудованием и сооружениями. Для выполнения целевых задач привлекается специализированный персонал.

Все атомные электростанции России

История атомной энергетики у нас в стране и за рубежом

Вторая половина 40 –х гг., ознаменовалась началом работ по созданию первого проекта, предполагающего использование мирного атома для генерации электроэнергии. В 1948 году, И.В. Курчатов, руководствуясь заданием партии и советского правительства, внёс предложение о начале работ по практическому использованию атомной энергии, для вырабатывания электроэнергии.

Спустя два года, в 1950г., неподалёку от посёлка Обнинское, расположенного в Калужской области, был дан старт строительству первой на планете АЭС. Запуск первой в мире промышленной атомной электростанции, мощность которой, составляла 5МВт, состоялся 27.06.1954г. Советский Союз стал первой в мире державой, которой удалось применить атом в мирных целях. Станция была открыта в получившем к тому времени статус города, Обнинске.

Но советские учёные не остановились на достигнутом, ими были продолжены работы в этом направлении, в частности всего четыре года спустя в 1958г., была начата эксплуатация первой очереди Сибирской АЭС. Её мощность в разы превосходила станцию в Обнинске и составляла 100МВт. Но для отечественных учёных и это, не было пределом, по завершению всех работ, проектная мощность станции составила 600МВт.

На просторах Советского Союза, строительство АЭС, приняло по тем временам, массовые масштабы. В том же году, была развёрнута стройка Белоярской АЭС, первая очередь которой, уже в апреле 1964 году снабдила первым потребителей. География строительства атомных станций, опутала своей сетью всю страну, в этом же году запустили первый блок АЭС в Воронеже, его мощность равнялась 210МВт, второй блок запущенный пять лет спустя в 1969 году, мог похвастаться мощностью в 365МВт. бум строительства АЭС, не стихал на протяжении всей советской эпохи. Новые станции, или дополнительные блоки уже построенных, запускались с периодичностью в несколько лет. Так, уже в 1973 году, собственную АЭС, получил Ленинград.

Однако Советская держава не была единственной в мире, кому было под силу осваивать такие проекты. В Великобритании, также не дремали и, понимая перспективность данного направления, активно изучали этот вопрос. Спустя всего два года, поле открытия станции в Обнинске, англичане запустили собственный проект по освоению мирного атома. В 1956г, городке Колдер – Холл британцами была запущенная своя станция, мощность которой, превышала советский аналог и составляла 46МВт. Не отставали и на другом берегу Атлантики, год спустя американцы торжественно запустили в эксплуатацию станцию в Шиппингпорте. Мощность объекта составила 60МВт.

Однако освоение мирного атома таило в себе скрытые угрозы, о которых вскоре узнал весь мир. Первой ласточкой стала крупная авария в Три – Майл – Айленд произошедшая в 1979г., ну а вслед за ней произошла катастрофа поразившая весь мир, в Советском Союзе, в небольшом городе Чернобыле произошла крупномасштабная катастрофа, это случилось в 1986году. Последствия трагедии были невосполнимы, но кроме этого, данный факт, заставил задуматься весь мир о целесообразности использования ядерной энергии в мирных целях.

Мировые светила в данной отрасли, всерьёз задумались о повышении безопасности ядерных объектов. Итогом стало проведение учредительной ассамблеи, которая была организована 15.05.1989г в советской столице. На ассамблее приняли решение о создании Всемирной ассоциации, в которую должны войти все операторы атомных электростанций, её общепризнанной аббревиатурой является WANO. В ходе реализации своих программ, организация планомерно следит за повышением уровня безопасности атомных станций в мире. Однако, несмотря на все приложенные усилия, даже самые современные и на первый взгляд кажущиеся безопасными объёкты, не выдерживают натиска стихий. Именно по причине эндогенной катастрофы, которая проявилась в форме землетрясения и последовавшего за ним цунами в 2011 году произошла авария на станции Фукусима – 1.

Атомный блэкаут

Классификация АЭС

Атомные станции классифицируются по двум признакам, по виду энергии которую они выпускают и по типу реакторов. В зависимости от типа реактора определяется количество вырабатываемой энергии, уровень безопасности, а также то, какое именно сырьё применяется на станции.

По типу энергии, которую производят станции, они делятся на два вида:

Атомные электростанции. Их основной функцией является выработка электрической энергии.

Атомные теплоэлектростанции. За счёт установленных там теплофикационных установок, использующих тепловые потери, которые неизбежны на станции, становится возможен нагрев сетевой воды. Таким образом, данные станции помимо электроэнергии вырабатывают тепловую энергию.

Исследовав множество вариантов, учёные пришли к выводу, что наиболее рациональными являются три их разновидности, которые в настоящее время и применяются во всём мире. Они отличаются по ряду признаков:

  1. Используемое топливо;
  2. Применяемые теплоносители;
  3. Активные зоны, эксплуатируемые для поддержания необходимой температуры;
  4. Тип замедлителей, определяющий снижение скорости нейтронов, которые выделяются при распаде и так необходимые, для поддержки цепной реакции.

Самым распространённым типом, является реактор, использующий в качестве топлива обогащённый уран. В качестве теплоносителя и замедлителя здесь используется обыкновенная или лёгкая вода. Такие реакторы называют лёгководными, их известно две разновидности. В первом, пар служащий для вращения турбин, образуется в активной зоне, называемой кипящим реактором. Во втором, образование пара происходит во внешнем контуре, который связан с первым контуром посредством теплообменников и парогенераторов. Данный реактор, начали разрабатывать в пятидесятых годах прошлого столетия, основой для них, были армейские программы США. Параллельно, примерно в эти же сроки, в Союзе разработали кипящий реактор, в качестве замедлителя у которого, выступал графитовый стержень.

Именно тип реактора с замедлителем данного типа и нашёл применение на практике. Речь идёт о газоохлаждаемом реакторе. Его история началась в конце сороковых, начале пятидесятых годов XX века, первоначально разработки данного типа использовались при производстве ядерного оружия. В связи с этим, для него подходят два вида топлива, это оружейный плутоний и природный уран.

Последним проектом, которому сопутствовал коммерческий успех, стал реактор, где в качестве теплоносителя применяется тяжёлая вода, в качестве топлива используется уже хорошо нам знакомый природный уран. Первоначально, такие реакторы проектировали несколько стран, но в итоге их производство сосредоточилось в Канаде, чему служит причиной, наличие в этой стране массовых залежей урана.

Ториевые АЭС -- энергетика будущего?

История совершенствования типов ядерных реакторов

Реактор первой на планете АЭС, представлял собой весьма разумную и жизнеспособную конструкцию, что и было доказано в ходе многолетней и безупречной работы станции. Среди его составных элементов выделяли:

  1. боковую водную защиту;
  2. кожух кладки;
  3. верхнее перекрытие;
  4. сборный коллектор;
  5. топливный канал;
  6. верхнюю плиту;
  7. графитовую кладку;
  8. нижнюю плиту;
  9. распределительный коллектор.

Основным конструкционным материалом для оболочек ТВЭЛ и технологических каналов была избрана нержавеющая сталь, на тот момент, не было известно о циркониевых сплавах, которые могли бы, подходить по свойствам для работы с температурой 300°С. Охлаждение такого реактора осуществлялось водой, при этом давление под которым она подавалась, составляло 100ат. При этом выделялся пар с температурой 280°С, что является вполне умеренным параметром.

Каналы ядерного реактора были сконструированы таким образом, чтобы была возможность их полностью заменить. Это связано с ограничением ресурса, которое обусловлено временем нахождения топлива в зоне активности. Конструкторы не нашли оснований рассчитывать на то, что конструкционные материалы расположенные в зоне активности под облучением, смогут выработать весь свой ресурс, а именно порядка 30 лет.

Что касается конструкции ТВЭЛ, то было решено принять трубчатый вариант с односторонним механизмом охлаждения

Это уменьшало вероятность того, что продукты деления попадут в контур в случае повреждения ТВЭЛ. Дл регуляции температуры оболочки ТВЭЛ, применили топливную композицию ураномолибденового сплава, который имел вид крупки, диспергированной посредством тепловодной матрицы. Обработанное таким образом ядерное горючее позволило получить высоконадёжные ТВЭЛ. которые были способны работать при высоких тепловых нагрузках.

Примером следующего витка развития мирных ядерных технологий может, послужить печально известная Чернобыльская АЭС. На тот момент технологии, применённые при её строительстве, считались наиболее передовыми, а тип реактора современнейшим в мире. Речь идёт о реакторе РБМК – 1000.

Тепловая мощность одного такого реактора достигала 3200МВт, при этом он располагает двумя турбогенераторами, электрическая мощность которых, достигает 500МВт, таким образом, один энергоблок обладает электрической мощностью 1000МВт. В качестве топлива для РБМК использовалась обогащённая двуокись урана. В исходном состоянии перед началом процесса одна тонна такого топлива содержит порядка 20кг горючего, а именно урана – 235. При стационарной загрузке двуокиси урана в реактор масса вещества составляет 180т.

Но процесс загрузки не представляет собой навал, в реактор помещают тепловыделяющие элементы, уже хорошо нам известные ТВЭЛ. По сути, они являются трубками, для создания которых применён циркониевый сплав. В качестве содержимого, в них помещаются таблетки двуокиси урана, обладающие цилиндрической формой. В зоне активности реактора их помещают в тепловыделяющие сборки, каждая из которых объединяет 18 ТВЭЛ.

Таких сборок в подобном реакторе насчитывается до 1700 штук, и размещаются они в графитовой кладке, где специально для этих целей сконструированы технологические каналы вертикальной формы. Именно в них происходит циркуляция теплоносителя, роль которого, в РМБК, выполняет вода. Водоворот воды происходит при воздействии циркуляционных насосов, коих насчитывается восемь штук. Реактор находится внутри шахты, а графическая кладка находится в цилиндрическом корпусе толщиной в 30мм. Опорой всего аппарата является бетонное основание, под которым находится бассейн – барботер, служащий для локализации аварии.

Третье поколение реакторов использует тяжёлую воду

Основным элементом которой, является дейтерий. Наиболее распространённая конструкция носит название CANDU, она была разработана в Канаде и широко применяется по всему миру. Ядро таких реакторов располагается в горизонтальном положении, а роль нагревательной камеры играют резервуары цилиндрической формы. Топливный канал тянется через всю нагревательную камеру, каждый из таких каналов, обладает двумя концентрическими трубками. Существуют внешняя и внутренняя трубки.

Во внутренней трубке, топливо находится под давлением теплоносителя, что позволяет дополнительно заправлять реактор в процессе работы. Тяжёлая вода с формулой D20 используется в качестве замедлителя. В ходе замкнутого цикла происходит прокачка воды по трубам реактора, содержащего пучки топлива. В результате ядерного деления выделяется тепло.

Цикл охлаждения при использовании тяжёлой воды заключается в прохождении через парогенераторы, где от выделяемого тяжёлой водой тепла закипает обыкновенная вода, в результате чего, образуется пар, выходящий под высоким давлением. Он распределяется обратно в реактор, в результате чего возникает замкнутый цикл охлаждения.

Именно по такому пути, происходило пошаговое совершенствование типов ядерных реакторов, которые использовались и используются в различных странах мира.



Атомные электрические станции (АЭС). Принципиальная схема АЭС. Технологические схемы атомной электростанции (АЭС)

Атомные электрические станции - это тепловые станции, использующие энергию ядерных реакций. В качестве ядерного горючего используют обычно изотоп урана U-235, содержание которого в природном уране составляет 0,714%. Основная масса урана - изотоп U-238 (99,28% всей массы) при захвате нейтронов превращается во вторичное горючее - плутоний Рu-239. Возможно также использование тория, который при захвате нейтронов превращается в делящийся изотоп урана U-233. Реакция деления происходит в ядерном реакторе. Ядерное топливо используют обычно в твердом виде. Его заключают в предохранительную оболочку. Такого рода тепловыделяющие элементы называют твэлами. Их устанавливают в рабочих каналах активной зоны реактора. Тепловая энергия, выделяющаяся при реакции деления, отводится из активной зоны реактора с помощью теплоносителя, который прокачивают под давлением через каждый рабочий канал или через всю активную зону. Наиболее распространенным теплоносителем является вода, которую подвергают тщательной очистке в неорганических фильтрах.

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. Тепло, выделяющееся в активной зоне реактора 1, отбирается водой (теплоносителем) 1-го контура, которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.

Рис. Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение

При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного назначения мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

Реакторы атомных электростанций с водяным теплоносителем могут работать в водном или паровом режиме. Во втором случае пар получается непосредственно в активной зоне реактора.

При делении ядер урана или плутония образуются быстрые нейтроны, энергия которых велика. В природном или слабообогащенном уране, где содержание U-235 невелико, цепная реакция на быстрых нейтронах не развивается. Поэтому быстрые нейтроны замедляют до тепловых (медленных) нейтронов. В качестве замедлителей на АЭС используют вещества, которые содержат элементы с малой атомной массой, обладающие низкой поглощающей способностью по отношению к нейтронам. Основными замедлителями являются вода, тяжелая вода, графит.

В настоящее время наиболее освоены реакторы на тепловых нейтронах. Такие реакторы конструктивно проще и легче управляемы по сравнению с реакторами на быстрых нейтронах. Однако перспективным направлением является использование реакторов на быстрых нейтронах с расширенным воспроизводством ядерного горючего - плутония; таким образом может быть использована большая часть U-238.

На последующем этапе развития атомной энергетики намечается освоение термоядерных реакторов, в которых используется энергия реакций синтеза легких ядер дейтерия и трития.

Типы ядерных реакторов

На атомных станциях России используют ядерные реакторы следующих основных типов:

  • водо-водяные с обычной водой в качестве замедлителя и теплоносителя;
  • графито-водные с водяным теплоносителем и графитовым замедлителем;
  • тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя;
  • графито-газовые с газовым теплоносителем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроении, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами тенлоносителя, принятого для данного типа реактора.

На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.).

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабоперегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт) снижаются более резко, чем это имеет место для ТЭС . В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30-40% (на ТЭС 60-70%).

Из-за аварии в Чернобыле в 1986 году программа развития атомной энергетики была сокращена. После значительного увеличения производства электроэнергии в 80-е годы темпы роста замедлились, а в 1992-1993 гг. начался спад. При правильной эксплуатации, АЭС – наиболее экологически чистый источник энергии. Их функционирование не приводит к возникновению “парникового” эффекта, выбросам в атмосферу в условиях безаварийной работы, и они не поглощают кислород.

К недостаткам АЭС можно отнести трудности, связанные с захоронением ядерных отходов, катастрофические последствия аварий и тепловое загрязнение используемых водоемов. В нашей стране мощные АЭС расположены: в Центральном и Центрально-Черноземном районах, на Севере, на Северо-Западе, на Урале, в Поволжье и на Северном Кавказе. Новым в атомной энергетике является создание АТЭЦ и АСТ. На АТЭЦ, как и на обычной ТЭЦ, производится тепловая и электрическая энергия, а на АСТ – только тепловая. АТЭЦ действует в поселке Билибино на Чукотке, строятся АСТ.

Единичная мощность ядерных энергоблоков достигла 1500 МВт. В настоящее время считается, что единичная мощность энергоблока АЭС ограничивается не столько техническими соображениями, сколько условиями безопасности при авариях с реакторами.

Действующие в настоящее время АЭС по технологическим требованиям работают главным образом в базовой части графика нагрузки энергосистемы с продолжительностью использования установленной мощности 6500-7000 ч/год.

Технологическая схема АЭС зависит от типа реактора, вида теплоносителя и замедлителя, а также от ряда других факторов. Схема может быть одно­контурной (рис. а), двухконтурной (рис. б) и трехконтурной (рис. в).

Одноконтурная технологическая схема АЭС

Одноконтурная схема с кипящим реактором и графитовым замедлителем типа РБМК-1000 применена на Ленинградской АЭС. Реактор работает в блоке с двумя конденсационными турбинами типа К-500-65/3000 и двумя генераторами мощностью 500 МВт. Кипящий реактор является парогенератором и тем самым предопределяет возможность применения одноконтурной схемы. Начальные параметры насыщенного пара перед турбиной: температура 284°С, давление пара 7,0 МПа. Одноконтурная схема относительно проста, но радиоактивность распространяется на все элементы блока, что усложняет биологическую защиту.

Двухконтурная технологическая схема АЭС

Двухконтурную схему применяют в водо-водяном реакторе типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается до температуры 568-598°С при давлении 12,25-15,7 МПа. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.

Трехконтурная технологическая схема АЭС

Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН-600. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной. Реактор БН-600 работает в блоке с тремя конденсационными турбинами К-200-130 с начальным давлением пара 13 МПа и температурой 500°С.

При работе АЭС, не потребляющих органическое топливо (уголь, нефть, газ), в атмосферу не выбрасываются окислы серы, азота, углекислый газ; это позволяет снизить «парниковый эффект», ведущий к глобальному изменению климата.

Во многих странах атомные станции уже вырабатывают более половины электроэнергии (во Франции - около 75%, в Бельгии - около 65%, в России - только 12%).

Уроки аварии на Чернобыльской АЭС (апрель 1986 г.) потребовали существенно (во много раз) повысить безопасность АЭС и заставили отказаться от строительства АЭС в густонаселенных и сейсмоактивных районах. Тем не менее с учетом экологической ситуации атомную энергетику следует рассматривать как перспективную.



В середине ХХ века лучшие умы человечества упорно трудились сразу над двумя задачами: над созданием атомной бомбы, а также над тем, как можно использовать энергию атома в мирных целях. Так появились первые в мире В чем заключается принцип работы АЭС? И где в мире расположены крупнейшие из этих электростанций?

История и особенности ядерной энергетики

"Энергия - всему голова" - именно так можно перефразировать известную пословицу, учитывая объективные реалии XXI века. С каждым новым витком технического прогресса человечеству необходимо всё большее ее количество. Сегодня энергия "мирного атома" активно используется в экономике и производстве, и не только в энергетике.

Электроэнергия, производимая на так называемых АЭС (принцип работы которых весьма прост по своей сути), широко используется в промышленности, освоении космоса, медицине и сельском хозяйстве.

Ядерной энергетикой называется отрасль тяжелой промышленности, извлекающая тепловую и электроэнергию из кинетической энергии атома.

Когда же появились первые АЭС? Принцип работы подобных электростанций советские ученые изучали еще в 40-х годах. Кстати, параллельно они же изобретали и первую атомную бомбу. Таким образом, атом был одновременно и "мирным", и смертельным.

В 1948 году И. В. Курчатов предложил советскому правительству начать проводить непосредственные работы по извлечению атомной энергии. Двумя годами позже в Советском Союзе (в городе Обнинске Калужской области) начинается строительство самой первой на планете АЭС.

Принцип работы всех схож, а разобраться в нем совсем не трудно. Об этом пойдет речь далее.

АЭС: принцип работы (фото и описание)

В основе работы любой лежит мощная реакция, которая возникает при делении ядра атома. В этом процессе чаще всего участвуют атомы урана-235 или же плутония. Ядро атомов делит нейтрон, попадающий в них извне. При этом возникают новые нейтроны, а также осколки деления, которые имеют огромную кинетическую энергию. Как раз эта энергия и выступает главным и ключевым продуктом деятельности любой атомной станции

Так можно описать принцип работы реактора АЭС. На следующем фото вы можете посмотреть, как он выглядит изнутри.

Выделяют три основных типа ядерных реакторов:

  • канальный реактор высокой мощности (сокращенно - РБМК);
  • водно-водяной реактор (ВВЭР);
  • реактор на быстрых нейтронах (БН).

Отдельно стоит описать принцип работы АЭС в целом. О том, как она работает, речь пойдет в следующей статье.

Принцип работы АЭС (схема)

Работает в определенных условиях и в строго заданных режимах. Кроме (одного или нескольких), в структуру АЭС входят и прочие системы, специальные сооружения и высококвалифицированный персонал. В чем же заключается принцип работы АЭС? Кратко его можно описать следующим образом.

Главный элемент любой АЭС - это ядерный реактор, в котором происходят все основные процессы. О том, что происходит в реакторе, мы писали в предыдущем разделе. (как правило, чаще всего это уран) в виде небольших черных таблеток подается в этот огромный котел.

Энергия, выделяемая во время реакций, происходящих в атомном реакторе, преобразуется в тепло и передается теплоносителю (как правило, это вода). Стоит отметить, что теплоноситель при этом процессе получает и некоторую дозу радиации.

Далее тепло из теплоносителя передается обычной воде (посредством специальных устройств - теплообменников), которая в результате этого закипает. Водяной пар, который при этом образуется, вращает турбину. К последней подсоединен генератор, который и генерирует электрическую энергию.

Таким образом, по принципу действия АЭС - это та же тепловая электростанция. Разница лишь в том, каким способом образуется пар.

География ядерной энергетики

Первая пятерка стран по производству атомной энергии выглядит следующим образом:

  1. Франция.
  2. Япония.
  3. Россия.
  4. Южная Корея.

При этом Соединенные Штаты Америки, вырабатывая в год около 864 миллиардов кВт*час, производят до 20 % всей электроэнергии планеты.

Всего в мире 31 государство эксплуатирует атомные электростанции. Из всех континентов планеты лишь два (Антарктида и Австралия) полностью свободны от атомной энергетики.

На сегодняшний день в мире функционирует 388 ядерных реакторов. Правда, 45 из них уже полтора года не вырабатывали электроэнергию. Большая часть ядерных реакторов расположена в Японии и в США. Полная их география представлена на следующей карте. Зеленым цветом обозначены страны с действующими ядерными реакторами, указано также их общее количество в конкретном государстве.

Развитие ядерной энергетики в разных странах

В целом, по состоянию на 2014 год в развитии ядерной энергетики наблюдается общий спад. Лидерами по строительству новых атомных реакторов являются три страны: это Россия, Индия и Китай. Кроме этого, ряд государств, не имеющих атомных электростанций, планируют построить их в ближайшее время. К таковым можно отнести Казахстан, Монголию, Индонезию, Саудовскую Аравию и ряд стран Северной Африки.

С другой стороны, ряд государств взяли курс на постепенное сокращение числа атомных электростанций. К таким относится Германия, Бельгия и Швейцария. А в некоторых странах (Италия, Австрия, Дания, Уругвай) ядерная энергетика запрещена на законодательном уровне.

Основные проблемы ядерной энергетики

С развитием ядерной энергетики связана одна существенная экологическая проблема. Это так называемое окружающей среды. Так, по мнению многих экспертов, АЭС выделяют больше тепла, нежели такие же по мощности тепловые электростанции. Особо опасно тепловое загрязнение вод, которое нарушает жизни биологических организмов и приводит к гибели многих видов рыб.

Другая острая проблема, связанная с атомной энергетикой, касается ядерной безопасности в целом. Впервые человечество всерьез задумалось об этой проблеме после Чернобыльской катастрофы 1986 года. Принцип работы Чернобыльской АЭС мало чем отличался от такового других атомных электростанций. Однако это не спасло её от крупной и серьезной аварии, повлекшей за собой очень серьезные последствия для всей Восточной Европы.

Причем опасность ядерной энергетики не ограничивается лишь возможными техногенными авариями. Так, большие проблемы возникают с утилизацией ядерных отходов.

Преимущества атомной энергетики

Тем не менее сторонники развития ядерной энергетики называют и явные преимущества работы атомных электростанций. Так, в частности, Всемирная ядерная ассоциация недавно опубликовала свой отчет с весьма интересными данными. Согласно ему, количество человеческих жертв, сопровождающих производство одного гигаватта электроэнергии на АЭС, в 43 раза меньше, чем на традиционных тепловых электростанциях.

Есть и другие, не менее важные, преимущества. А именно:

  • дешевизна производства электроэнергии;
  • экологическая чистота атомной энергетики (за исключением лишь теплового загрязнения вод);
  • отсутствие строгой географической привязки атомных электростанций к крупным источникам топлива.

Вместо заключения

В 1950 году была построена первая в мире АЭС. Принцип работы атомных электростанций заключается в делении атома с помощью нейтрона. В результате этого процесса высвобождается колоссальный объем энергии.

Казалось бы, атомная энергетика - это исключительное благо для человечества. Однако история доказала обратное. В частности, две крупные трагедии - авария на советской Чернобыльской АЭС в 1986 году и авария на японской электростанции Фукусима-1 в 2011 году - продемонстрировали опасность, которую несет в себе "мирный" атом. И многие страны мира сегодня начали задумываться о частичном или даже полном отказе от ядерной энергетики.

Атомная электростанция – предприятие, представляющее собой совокупность оборудования и сооружений для выработки электрической энергии. Специфика данной установки заключается в способе получения тепла. Необходимая для выработки электроэнергии температура возникает в процесса распада атомов.

Роль топлива для АЭС выполняет чаще всего уран с массовым числом 235 (235U). Именно потому, что этот радиоактивный элемент способен поддерживать цепную ядерную реакцию, он используется на атомных электрических станциях, а также применяется в ядерном оружии.

Страны с наибольшим количеством АЭС

На сегодняшний день в 31 стране мира функционируют 192 атомные электростанции, использующие 451 энергетический ядерный реактор общей мощностью 394 ГВт . Подавляющее большинство АЭС находится в странах Европы, Северной Америки, Дальневосточной Азии и на территории бывшего СССР, в то время как в Африке их почти нет, а в Австралии и Океании их нет вообще. Еще 41 реактор не производил электричества от 1,5 до 20 лет, причём 40 из них находятся в Японии .

За последние 10 лет в мире в эксплуатацию было введено 47 энергоблоков, почти все из них находятся либо в Азии (26 - в Китае), либо в Восточной Европе. Две трети строящихся на данный момент реакторов приходятся на Китай , Индию и Россию . КНР осуществляет самую масштабную программу строительства новых АЭС, ещё около полутора десятка стран мира строят АЭС или развивают проекты их строительства.

Помимо США, к списку наиболее продвинутых в области ядерной энергетики стран относят:

  • Францию;
  • Японию;
  • Россию;
  • Южную Корею.

В 2007 году Россия приступила к строительству первой в мире плавучей АЭС , позволяющей решить проблему нехватки энергии в отдалённых прибрежных районах страны . Строительство столкнулось с задержками. По разным оценкам, первая плавающая АЭС заработает в 2019-2019 годах.

Несколько стран, включая США, Японию, Южную Корею, Россию, Аргентину, ведут разработки мини-АЭС с мощностью порядка 10-20 МВт для целей тепло- и электроснабжения отдельных производств, жилых комплексов, а в перспективе - и индивидуальных домов. Предполагается, что малогабаритные реакторы (см., например, Hyperion АЭС) могут создаваться с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества . Строительство одного малогабаритного реактора CAREM25 ведётся в Аргентине. Первый опыт использования мини-АЭС получил СССР (Билибинская АЭС).

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» — «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой — D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов — графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

За данным корпусом следует зал. В нем обустроены парогенераторы и находится основная турбина. Сразу же за ними располагаются конденсаторы, а также линии передачи электричества, выходящие за границы территории.

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C ). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Защитные механизмы АЭС

Все атомные электростанции в обязательном порядке оснащаются комплексными системами безопасности, например:

  • локализующие – ограничивают распространение вредоносных веществ в случае аварии, повлекшей выброс радиации;
  • обеспечивающие – подают определённое количество энергии для стабильной работы систем;
  • управляющие – служат для того, чтобы все защитные системы функционировали нормально.

Кроме того, реактор может аварийно остановиться в случае чрезвычайной ситуации. В этом случае автоматическая защита прервет цепные реакции, если температура в реакторе продолжит подниматься. Эта мера впоследствии потребует серьезных восстановительных работ для возвращения реактора в строй.

После того как в Чернобыльской АЭС произошла опасная авария , причиной которой оказалось несовершенство конструкции реактора, стали больше внимания уделять защитным мерам, а также провели конструкторские работы для обеспечения большей надежности реакторов.

Катастрофа ХХІ века и её последствия

В марте 2011 года северо-восток Японии поразило землетрясение, вызвавшее цунами, которая в итоге повредила 4 из 6 реакторов АЭС «Фукусима-1».

Менее чем через два года после трагедии официальное количество погибших в катастрофе превышало 1500 человек, в то время как 20 000 человек до сих пор считаются пропавшими без вести, а еще 300 000 жителей были вынуждены оставить свои дома.

Были и пострадавшие, которые оказались не способны покинуть место происшествия из-за огромной дозы излучения. Для них была организована незамедлительная эвакуация, продолжавшаяся 2 дня.

Тем не менее, с каждым годом методы предотвращения аварий на АЭС, а также нейтрализации ЧП совершенствуются – наука неуклонно идёт вперёд. Тем не менее, будущее явно станет временем расцвета альтернативных способов получения электроэнергии — в частности, логично ожидать появления в ближайшие 10 лет орбитальных солнечных батарей гигантского размера, что вполне достижимо в условиях невесомости, а также прочих, в том числе революционных технологий в энергетике.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них